

Stereoselective Synthesis of Isoflavonoids. (R)- and (S)-Isoflavans

Marietjie Versteeg, Barend C.B. Bezuidenhoudt and Daneel Ferreira*

Department of Chemistry, University of the Orange Free State, P.O. Box 339, Bloemfontein, 9300 South Africa

Received 1 May 1998; revised 2 June 1998; accepted 8 June 1998

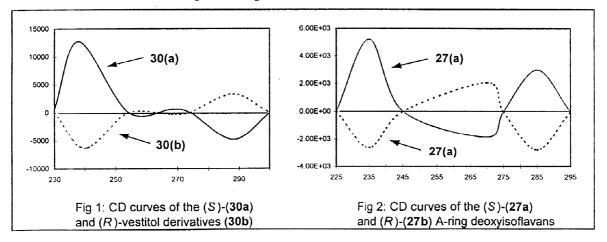
Abstract: α-Benzylation of (+)- and (-)-N-phenylacetyl imidazolidinones with 2-O-methoxymethylbenzyl bromides, followed by reductive removal of the chiral auxiliary and cyclization, afforded oxygenated isoflavans in excellent enantiomeric excess and yield. © 1999 Elsevier Science Ltd. All rights reserved.

The isoflavanoids represents a relatively large group of naturally occurring C₆•C₅•C₆-type secondary metabolites displaying a distinct range of physiological activity¹ and structural diversity.² In the non-planar analogues, *viz*. isoflavanones, isoflavan-4-ols, pterocarpans and rotenoids, chirality is confined to two of the carbon atoms of the chroman heterocycle. Among the various synthetic routes to these compounds only one has truly addressed the issue of stereoselection at any of the stereocentres. This method involved the synthesis of pterocarpans *via* asymmetric induction in reactions of 2*H*-chromenes with 1,4-benzoquinones using chiral Ti(IV) complexes.³ The second attempt at selectivity was based on the resolution of isoflavan-4-ols during the preparation of pterocarpans.⁴ Since the configuration at C-3 of the 3-phenylchroman framework would dictate the stereochemistry at C-2 or C-4, a protocol of controlling the former stereocentre would facilitate the stereoselective synthesis of the full range of chiral isoflavonoids. We thus selected isoflavans as targets⁵ and opted for a protocol of stereoselective⁶ α-benzylation of phenylacetic acid derivatives, subsequent reductive removal of the chiral auxiliary and cyclization, for construction of the isoflavan backbone. Results relevant to the enantioselective synthesis of isoflavans displaying the typical aromatic oxygenation patterns of naturally occurring analogues are discussed here.

Owing to the efficiency of the asymmetric alkylation reactions of chiral imide enolates,⁷ the commercially available R-(+)- and S-(-)-4-benzyl-2-oxazolidinones 1 and 2 were initially considered as chiral auxiliaries in the benzylation reactions. Thus, treatment of the lithio derivative of the R-(+)-4-benzyl-2-oxazolidinone 1 with phenylacetyl chloride⁸ afforded the 3-phenylacetyl-2-oxazolidinone 3 in 74% yield (Scheme 1). Imide 3 was reacted with lithium isopropylcyclohexylamide (LICA) and the resultant enolate trapped with benzyl bromide in the presence of hexamethylphosphoric triamide (HMPA) to give the 3-(2',3'-diphenyl)propionyl-2-oxazolidinone 4 in low yield (20%) and diastereoselectivity (20%). Such poor selec-

Scheme 1. Reagents and conditions: i, oxazolidinone 1, n-BuLi, Ph₃CH in THF, -78^oC; ii, PhCH₂COCl, -78^oC; iii, LICA, THF, -78^oC; iv, BnBr, HMPA, -78^oC to -50^oC

tivity presumably results from the presence of HMPA which effects dissociation of metal chelates and hence equilibration of the E- and Z-enolates of imide 3. In the absence of HMPA a diastereoselectivity of 99% was observed but the chemical yield could not be improved beyond 30%. Since trapping of the enolate of 3 with methyl iodide afforded the α -methyl analogue of 4 in less than 50% yield, and quenching of the same enolate with D_2O after 30 min. indicated an imide 3/oxazolidinone 1 ratio of 2:1, the poor yield could not be attributed to steric reasons or to incomplete enolization but rather to decomposition of the enolate of 3 via phenylketene formation.


The intrinsic leaving group aptitude of the 2-oxazolidinone moiety prompted a switch of chiral auxiliaries to the (4S,5R)-(+)- and (4R,5S)-(-)-1,5-dimethyl-4-phenyl-2-imidazolidinones **5a** and **5b**¹⁰⁻¹³ with poorer nucleofugal properties relative to **1** and **2**. The basicity of the imidazolidinones was decreased by utilizing them as trimethylsilyl ethers **6a** and **6b** in the acylation step using the phenylacetyl chlorides **7**, **8** and **9**. The ensuing N-acyl imidazolidinones **10-12** were then alkylated with the appropriate 2-O-methoxymethylbenzyl bromides (Scheme 2) in good to excellent yields with only one diastereomer detectable by ¹H NMR (de, >99%). Optimum reproducibility and yields for this step were obtained in a dichloromethane (DCM)-THF (2:3) solvent system. The lower yields observed for compounds **16-18** (60-70% compared to 84-96% for **13-15**) are attributable to the decreased stability of the 2,4-dioxybenzyl bromides compared to the o-mono-oxy analogues. Removal of the chiral auxiliary was effected by reductive deamination using LiAlH₄¹⁴ in THF for imides **13-15** and a saturated solution of LiBH₄¹⁵ in ether for analogues **16-18** to give the 2,3- diarylpropan-1-ols **19-24**. Deprotection with 3M HCl in methanol gave the phenolic propan-1-ols **19-24** (R⁵=H) in quantitative yields. Cyclization under Mitsunobu conditions, ¹⁶ *i.e.* triphenyl phosphine - diethyl azodicarboxylate (DEAD) in THF, finally afforded the target isoflavans **25-30** in excellent yields and in nearly enantiopure form (ee >96 —>99%). E.e. values for the isoflavans **29** and

30 were determined by ¹H NMR using Eu(hfc)₃ and Pr(hfc)₃, respectively, as chiral shift reagents. Those for the remaining analogues 25-28 were assessed by HPLC using a chiral adenine glycoprotein column with 9-22% isopropanol in a pH 7 phosphate buffer as eluent.

The stereochemistry of the alkylation step of the acylimides 10-12 is explicable in terms of the preferential formation of a Z-enolate.¹⁷ Approach of the electrophile is then directed to the face of the enolate opposite the 4-phenyl substituent of the imidazolidinone moiety. The observed stereoselection is in

accord with that reported by Evans *et al.*, ¹⁷ *i.e.* 4S- and 4R-N-acyloxazolidinones led to propanols exhibiting positive and negative $[\alpha]_D$ values, respectively. Thus, benzylation of the (4S,5R)-(+)-N-phenylacetylimidazolidinones 10a-12a and the subsequent conversions afforded (+)-propanols 19a-24a and the 3S-isoflavans 25a-30a, and the (4R,5S)-(-)-N-phenyl-acetylimidazolidinones 10b-12b the (-)-propanols 19b-24b and the 3R series of isoflavans 25b-30b. The signs of rotation of 7,4'-dimethoxy- and 7,2',4'-trimethoxy-isoflavan 28a (-12°) and 30a (+9°), respectively, are in agreement with those of 3S-7,4'-dihydroxyisoflavan [(-)-equol $(-12°)]^{18}$ and 3S-(+)-7,2'-di-O-methylvestitol (+9°). Similar deductions were possible by comparison of the $[\alpha]_D$ values of 3R- and 3S-7,2'-di-O-methylvestitol, obtained *via* hydrogenolysis of (6aR,11aR)-(-)-homopterocarpin and (6aS,11aS)-(+)-medicarpin, respectively, ²⁰ with those of synthetic analogues 30a and 30b.

Owing to the unpredictable effect of substitution pattern on the sign of the optical rotation of isoflavans, we used the chiroptical data of the authentic 3R- and 3S-vestitol derivatives (vide supra) to establish the absolute configuration at C-3 of the synthetic isoflavans 25-30. Thus, the CD spectra (Figure 1) of the 3S-isoflavans with oxygenation at both the A- and B-rings, e.g. 30a, exhibit positive and negative Cotton effects (CE's) in the 240 and 270-280 nm regions, respectively, and conversely for the 3R-analogues, e.g. 30b. The spectra (Figure 2) of the 7-deoxy 3S-isoflavans with mono-oxygenation at the B-ring, e.g. 25a, exhibit negative CE's in both the 230-240 and 270-290 nm regions while those with disubstituted B-rings, e.g. 27a, show an additional positive CE near 270 nm. CE's with opposite signs were observed for the 3R-series of compounds, e.g. 25b and 27b.

We have thus developed the first direct and highly efficient enantioselective route towards isoflavans. The potential of this protocol in the chemistry of the isoflavonoids is evident and it should contribute in establishing chirality also at C-2 and C-4 of the 3-phenylchroman system in the full range of isoflavonoids. The CD data additionally provide a powerful probe to unequivocally establish the absolute configuration of the naturally occurring isoflavans.

EXPERIMENTAL

¹H NMR spectra were recorded at ambient temperature on a Bruker AM-300 spectrometer for solutions in CDCl₃ with solvent as internal standard. High and low resolution EI-mass spectra were obtained on a VG70-70E mass spectrometer. M.p.s. were measured on a Reichert hot-stage apparatus and are uncorrected. CD measurements were obtained for solutions in MeOH on a Jasco J-710 spectropolarimeter and optical rotations measured with a Bendix-NPL automatic polarimeter for solutions in CHCl₃. Thin layer chromatography (TLC) was performed on DC-Alufolien Kieselgel 60 F₂₅₄ (0.25 mm) plates with visualisation by UV light and/or HCHO-H₂SO₄ spray. Preparative plates (PLC) [Kieselgel PF₂₅₄ (1.0 mm) were air-dried and used without prior activation. Flash column chromatography (FCC) was on Merck Kieselgel 60 (230-400 mesh) under a positive pressure by means of compressed N₂. Mps refer to crystals obtained from Me₂CO.

The imidazolidinones 5a and 5b¹⁰⁻¹³ and their *N*-trimethylsilylderivatives, 6a and 6b,²³ phenylacetyl chlorides 7-9⁸ and the 2-*O*-methoxymethyl- and 2'-*O*-methoxymethyl-4-methoxy-benzyl bromides⁵ were prepared according to standard literature procedures.

(R)-(+)-4-Benzyl-3-phenylacetyl-2-oxazolidinone 3

A soln. of (R)-4-benzyl-2-oxazolidinone 1 (450 mg, 2.54 mmol) and Ph₃CH (2 mg) in dry THF (4.8 ml) was stirred under N₂ at -78°C. *n*-BuLi (1.0 eq., 1.59 ml) was added slowly until an orange-red colour persisted after which phenylacetyl chloride (2.69 mmol, 0.36 ml) was added dropwise and the temperature was left to rise to rt. A satd. soln. of NaHCO₃ (5.0 ml) was added, the mixture was stirred at rt for 30 min., extracted with DCM (3x15 ml), the combined organic phases dried (Na₂SO₄), evaporated to dryness and separated by PLC in hexane-EtOAc (65:35) to give the title compound 3 as white needles (450 mg, R_F 0.60), mp 76°C (lit.²⁴ mp 73°C).

(R)-(+)-4-Benzyl-3-(2',3'-diphenyl)propionyl-2-oxazolidinone 4.

LICA (1.05 eq.) was prepared at -78°C under N_2 by treatment of isopropyl-cyclohexylamine (1.75 mmol) with n-BuLi (1.75 mmol) in THF (2.0 ml). A soln. of 3 (50 mg) in dry THF (2.0 ml) was cooled to -78°C and added to the LICA. After stirring for 30 min. at -78°C, HMPA (3 eq.) and benzyl bromide (3 eq.) were added and the temperature was allowed to rise to -50°C over 3 h. A satd. NH₄Cl soln. (5 ml) was added and the mixture was extracted with EtOAc (3x10 ml), the combined EtOAc layer was washed with satd. NaHCO₃ (5 ml), dried (Na₂SO₄), evaporated to dryness and separated by PLC in hexane-EtOAc (9:1) to give 4 as white needles (12 mg, R_F 0.30), mp 199°C; [α]_D +190° (c 1.0); δ _H 7.46-7.41 (2xAr-H, m), 7.35-7.19 (11xAr-H, m), 6.95-6.89 (2xAr-H, m), 5.48 (2'-H, dd, J=6.0, 10.0 Hz), 4.60-4.51 (4-H, m), 4.01-3.98 (4-

 CH_2 Ph, m), 3.52 (3'-H, dd, J=10.0, 13.5 Hz), 3.06 (3'-H, dd, J=6.0, 13.5 Hz), 2.96 (5-H, dd, J=13.5, 3.5 Hz), 2.54 (5-H, dd, J=9.0, 13.5 Hz); m/z 385 (M⁺, 39%) (Found: M⁺, 385.1671. C₂₅H₂₃O₃N requires M, 385.1678).

General procedure for preparation of N-arylacetyl-2-imidazolidinones 10-12

To a suspension of TBAF (30-85 mg) and 1,5-dimethyl-4-phenyl-3-trimethylsilyl-2-imidazolidinones **6a/b** (0.00967-0.015 ml) in CH₃CN (20-40 ml) was added the arylacetyl chlorides **7-9** (1.0 eq. rel. to **6a/b**) and the mixture was stirred at rt for 6-24 h, the solvent evaporated and the residue dissolved in DCM. The solution was washed with a satd. NaHCO₃ soln. (5.0 ml) and water (5.0 ml), dried (Na₂SO₄), the solvent evaporated and the mixture separated by FCC.

(+)-(4S,5R)- and (-)-(4R,5S)-1,5-dimethyl-4-phenyl-3-(4-methoxyphenyl-acetyl)-2-imidazolidinone **10a/b**, resp.: time 24, 6 h; yield, 75, 80%; R_F 0.24 [hexane-Me₂CO (8:2)]; [α]_D +57.8⁰, -55.8⁰ (c 1.0, 1.03); both white needles, mp 129°C; δ_H 7.29-7.25 (3xAr-H, m), 7.18 [2,6-H(B), d, J=8.5 Hz], 7.07-7.04 (2xAr-H, m), 6.80 [3,5-H(B), d, J=8.5 Hz], 5.29 (4-H, d, J=8.5 Hz), 4.27 (s, CH_2Ar),

(+)-(4S,5R)- and (-)-(4R,5S)-1,5-dimethyl-4-phenyl-3-(3,4-dimethoxyphenylacetyl)-2-imidazolidinone 11a/b, resp.: time, both 24 h; yield, 70, 75%; R_F 0.31 [hexane-Me₂CO (7:3)]; [α]_D +56.7°, -56.2° (c 1.0, 1.0), both white needles, mp 117°C; δ_H 7.27-7.25 (3xAr-H, m), 7.06-7.02 (2xAr-H, m), 6.85 [6-H(B), dd, J=2.5, 8.0 Hz], 6.80-6.75 [2-/5-H(B), 2nd order], 5.30 (4-H, d, J=8.5 Hz), 4.32, 4.23 (- CH_2 Ar, both d, both J=15.0 Hz), 3.94-3.85 (5-H, m), 3.85, 3.77 (2xOMe, both s), 2.84 (NMe, s), 0.78 (5-CH₃, d, J=6.5 Hz); m/z 368 (M⁺, 31%) (Found: M⁺ 368.1731. C₂₁H₂₄O₄N₂ requires M 368.1736).

(+)-(4S,5R)- and (-)-(4R,5S)-1,5-dimethyl-4-phenyl-3-(2,4-dimethoxyphenylacetyl)-2-imidazolidinone 12a/b, resp.: time, both 24 h; yield, 60, 63%; R_F 0.33 [hexane-Me₂CO (8:2)]; [α]_D +97.8⁰, -91.2⁰ (c 1.0, 1.06); both white needles, mp 120⁰C; δ_H 7.33-7.22 (3xAr-H, m), 7.17-7.13 (2xAr-H, m), 6.97 [6-H(B), d, J=8.5 Hz], 6.39-6.35 [3,5-H(B), 2nd order], 5.31 (4-H, d, J=8.5 Hz), 4.31, 4.15 (- CH_2 Ar, both d, both J=17.5 Hz), 3.99-3.87 (5-H, m), 3.75, 3.66 (2xOMe, both s), 2.85 (NMe, s), 0.81 (5-CH₃, d, J=6.5 Hz); m/z 368 (M⁺, 24%) (Found: M⁺ 368.1734. C₂₁H₂₄O₄N₂ requires M 368.1736).

General procedure for preparation of the N-(2',3'-biphenyl)propionyl-2-imidazolidinones 13-18

A soln. of the *N*-arylacetyl-2-imidazolidinone **10-12** (1.62 mmol) in dry THF (5.0 ml) was added at -78°C to a THF soln. of LICA (2.3 mmol) (*vide supra*), the temp. was allowed to rise to -50°C after which a soln. of the oxygenated benzylbromides⁵ in DCM (2.5 mmol) was added and the mixture stirred for 30-90 min. at -40°C. A satd. NH₄Cl soln. (3.0 ml) was added and the mixture was extracted with EtOAc (3x10 ml), the combined layers were washed with satd. NaHCO₃ (10 ml), water (10 ml), dried (Na₂SO₄), the solvent was evaporated and the mixture separated by PLC or FCC.

(+)-(4S,5R)- and (-)-(4R,5S)-1,5-dimethyl-4-phenyl-3-[2'-(4-methoxyphenyl)-3'-(2-O-methoxymethyl-phenyl)]propionyl-2-imidazolidinones 13a/b, resp.: time, both 1 h; yield, 84, 96%; R_F 0.46 [hexane-EtOAc-Me₂CO (7:1.5:1.5)]; [α]_D +119⁰, -116⁰ (c 1.19, 1.08); both yellow oils; δ_H 7.39 [2,6-H(B), d, J=8.5 Hz], 7.22-7.14 (3xAr-H, m), 7.11-7.04 (1xAr-H, m), 6.99 (1xAr-H, dd, J=1.5, 8.0 Hz), 6.89-6.79 (3xAr-H, m), 6.81 [3,5-H(B), d, J=8.5 Hz], 6.68 (1xAr-H, ddd, J=1.5, 7.0, 7.0 Hz), 5.74 [-CH(Bn)Ar, dd, J=5.5, 9.5 Hz], 5.15 (4-H, d, J=9.0 Hz), 5.13, 5.06 (-OCH₂OMe, both d, both J=7.0 Hz), 3.76 (OMe, s), 3.74-3.64 (5-H, m), 3.45 (-OCH₂OMe, s), 3.31, 2.94 (-CH₂Ar, both dd, J=9.5, 13.5 and 5.5, 13.5 Hz), 2.69 (NMe, s), 0.66 (5-CH₃, d, J=6.0 Hz); m/z 488 (M⁺, 8%) (Found: M⁺ 488.2303. C₂₉H₃₂O₅N₂ requires M 488.2311).

(+)-(4S,5R)- and (-)-(4R,5S)-1,5-dimethyl-4-phenyl-3-[2'-(3,4-dimethoxyphenyl)-3'-(2-O-methoxymethylphenyl)]propionyl-2-imidazolidinones **14a/b**, resp.: time, both 2 h; yield, 95, 87%, R_F 0.33 [hexane-EtOAc-Me₂CO (8:1:1)]; [α]_D +112⁰, -105⁰ (c 0.95, 0.99); both yellow oils; δ_H 7.23-7.15 (3xAr-H, m), 7.12-6.80 (7xAr-H, m), 6.76 [5-H(B), d, J=8.0 Hz], 6.68 [4-H(A) or 5-H(A), ddd, J=1.5, 7.5, 7.5 Hz], 5.73 [-CH(Bn)Ar, dd, J=5.5, 9.5 Hz), 5.17 (4-H, d, J=8.5 Hz), 5.14, 5.07 (-OCH₂OMe, both d, both J=6.5 Hz), 3.85, 3.83 (2xOMe, both s), 3.76-3.65 (5-H, m), 3.45 (-OCH₂OMe, s), 3.31, 2.95 (-CH₂Ar, both dd, J=9.0, 13.0 and 5.5, 13.0 Hz), 2.70 (NMe, s), 0.67 (5-CH₃, d, J=6.5 Hz); m/z 518 (M⁺, 27%) (Found: M⁺ 518.2422. C₃₀H₃₄O₆N₂ requires M 518.2417).

(+)-(4S,5R)- and (-)-(4R,5S)-1,5-dimethyl-4-phenyl-3-[2'-(2,4-dimethoxyphenyl)-3'-(2-O-methoxy-methylphenyl)]propionyl-2-imidazolidinones **15a/b**, resp.: time, 1.5, 2.0 h; yield, both 92%; R_F 0.40 [hexane-Me₂CO (7:3)]; [α]_D +108⁰, -131⁰ (c 1.0, 1.01); both white needles, mp 95⁰C; δ_H 7.30-7.16 (6xAr-H, m), 7.09-6.87 (4xAr-H, m), 6.73 [4- or 5-H(A), ddd, J=1.5, 7.5, 7.5 Hz], 6.41-6.37 (2xAr-H, m), 6.00 [-xCH(Bn)Ar, dd, J=6.5, 8.5 Hz], 5.21 (4-H, d, J=9.0 Hz), 5.08, 5.00 (-OCH₂OMe, both d, both J=7.0 Hz), 3.75, 3.70 (2xOMe, both s), 3.41 (-OCH₂OMe, s), 3.21, 2.86 (-CH₂Ar, both dd, J=8.5, 13.5 and 6.5, 13.5 Hz), 2.70 (NMe, s), 0.69 (5-CH₃, d, J=7.0 Hz); m/z 518 (M⁺, 3%) (Found: M⁺ 518.2421. C₃₀H₃₄O₆N₂ requires M 518.2417).

(+)-(4S,5R)- and (-)-(4R,5S)-1,5-dimethyl-4-phenyl-3-[2'-(4-methoxyphenyl)-3'-(4-methoxy-2-O-methoxymethylphenyl)]propionyl-2-imidazolidinones **16a/b**, resp.: time, 16, 18 h (both at -30°C); yield, both 65%; R_F 0.53 [hexane-EtOAc-Me₂CO (7:2.5:0.5, x3)]; [α]_D +183°, -110° (c 1.0, 1.0); both white needles, mp 100°C; δ_H 7.42 [2,6-H(B), d, J=9.0 Hz], 7.26-7.15 (3xAr-H, m), 6.86-6.80 (4xAr-H, m), 6.78 [6-H(A), d, J=8.5 Hz], 6.63 [3-H(A), d, J=2.6 Hz], 6.23 [5-H(A), dd, J=2.5, 8.5 Hz], 5.73 [CH(Bn)Ar, dd, J=5.5, 10.0 Hz], 5.17 (4-H, d, J=8.5 Hz), 5.13, 5.05 (-OCH₂OMe, both d, both J=6.5 Hz), 3.77 (2xOMe, s), 3.71-3.65 (5-H, m), 3.46 (-OCH₂OMe, s), 3.25, 2.88 (-CH₂Ar, both dd, J=10.0, 13.5 and 5.0, 13.5 Hz), 2.71 (NMe, s), 0.67 (5-CH₃, d, J=7.0 Hz); m/z 519 (M⁺, 19%) (Found: M⁺ 519.2481. C₃₀H₃₄O₆N₂ requires M 519.2495).

(+)-(4S,5R)- and (-)-(4R,5S)-1,5-dimethyl-4-phenyl-3-[2'-(2-methoxyphenyl)-3'-(4-methoxy-2-O-methoxymethylphenyl)]propionyl-2-imidazolidinone 17a/b, resp.: time, both 18 h at -30°C; yield, 65, 70%; R_F 0.60 [PhCH₃-EtOAc-Me₂CO (72:18:10)]; [α]_D +740°, -765° (c 1.17, 0.10); both yellow oils; δ_H 7.37 (1xAr-H, dd, J=2.0, 8.0 Hz), 7.20-7.10 (4xAr-H, m), 6.91 [6-H(A), d, J=8.5 Hz], 6.88-6.77 (4xAr-H, m), 6.57 [3-H(A), d, J=2.5 Hz], 6.26 [5-H(A), dd, J=2.5, 8.5 Hz], 6.06 [-CH(Bn)Ar, dd, J=6.5, 9.0 Hz], 5.20 (4-H, d, J=8.5 Hz), 5.04, 4.94 (-OCH₂OMe, both d, J=6.5 Hz), 3.74, 3.72 (2xOMe, both s), 3.71-3.63 (5-H, m), 3.40 (-OCH₂OMe, s), 3.13, 2.93 (-CH₂Ar, dd, J=9.0, 13.5 and 6.5, 13.5 Hz), 2.67 (NMe, s), 0.66 (5-CH₃, d, J=6.5 Hz); m/z 519 (M⁺, 78%) (Found: M⁺ 519.2488. C₃₀H₃₄O₆N₂ requires 519.2495).

(+)-(4*S*,5*R*)- and (-)-(4*R*,5*S*)-1,5-dimethyl-4-phenyl-3-[2'-(2,4-dimethoxyphenyl)-3'-(4-methoxy-2-O-methoxymethylphenyl)]propionyl-2-imidazolidinone **18a/b**, resp.: time, 8, 18 h at -30°C; yield, both 60%; R_F 0.48 [PhCH₃-Me₂CO-MeOH (90:7:3)]; [α]_D +212°, -200° (*c* 0.10, 1.177); both white needles, mp 92°C; δ_H 7.31 [6-H(B), d, J=9.0 Hz], 7.25-7.17 (3xAr-H, m), 6.94 [6-H(A), d, J=9.0 Hz], 6.92-6.88 (2xAr-H, m), 6.60 [3-H(A) or 3-H(B), d, J=2.5 Hz], 6.43-6.38 (2xAr-H, m), 6.29 [5-H(A) or 5-H(B), dd, J=3.0, 9.0 Hz], 6.00 [-C*H*(Bn)Ar, dd, J=6.5, 9.0 Hz], 5.23 (4-H, d, J=9.0 Hz), 5.08, 4.98 (-OC*H*₂OMe, both d, J=7.0 Hz), 3.75 (3xOMe, s), 3.76-3.70 (5-H, m), 3.42 (-OCH₂OMe, s), 3.15, 2.92 (-C*H*₂Ar, both dd, J=9.0, 14.0 and 6.5, 14.0 Hz), 2.71 (NMe, s), 0.70 (5-CH₃, d, J=6.5 Hz); m/z 539 (M⁺, 1%) (Found: M⁺ 539.1742. C₃₁H₂₆O₇N₂ requires M 538.1740).

General procedure for preparation of the 2,3-diarylpropan-1-ols 19-24.

The N-acyl-2-imidazolidinones 13a/b were reduced in dry THF using a suspension of LiAlH₄ (2.0 eq.) in dry THF at -10⁰C under N₂. The mixture was stirred at this temp. for 1 h and for a further 1 h at rt, MeOH and a satd. NH₄Cl soln. were slowly added and the mixture was extracted with EtOAc (3x10 ml). The extract was washed with satd. NaHCO₃ soln. (10 ml), H₂O (10 ml), dried (Na₂SO₄), the solvent evaporated and the mixture separated by PLC or FCC.

The N-acylimidazolidinones 14-18 were reduced in dry Et₂O/THF (4:1) using a satd. soln. of LiBH₄ in Et₂O under N₂ at rt. The mixture was stirred at rt for 18 h, diluted with EtOAc and quenched with 3M HCl, washed with satd. NaHCO₃ soln., dried (Na₂SO₄) and the solvent evaporated. Sepn. by PLC or FCC afforded the 2,3-diarylpropan-1-ols.

(S)- and (R)-2-(4-methoxyphenyl)-3-(2-O-methoxymethylphenyl)-1-propanols 19a/b, resp.: yield, 89, 85%; $R_F 0.15$ [hexane- C_6H_6 -Me₂CO (7:2:1)]; $[\alpha]_D + 73^0$, -85⁰ (c 0.98, 0.97); both clear oils; δ_H , ref. 5; m/z 302 (M⁺, 3%) (Found: M⁺ 302.1520. $C_{18}H_{22}O_4$ requires M 302.1517).

(S)- and (R)-2-(3,4-dimethoxyphenyl)-3-(2-O-methoxymethylphenyl)-1-propanols **20a/b**, resp.: yield, 86, 84%; R_F 0.16 [hexane-C₆H₆-Me₂CO (6:3:1)]; [α]_D +50⁰, -50⁰ (c 1.04, 1.04); both clear oils; δ _H, ref. 5; m/z 332 (M⁺, 33%) (Found: M⁺ 332.1628. C₁₉H₂₄O₅ requires M 332.1622).

- (S)- and (R)-2-(2,4-dimethoxyphenyl)-3-(2-O-methoxymethylphenyl)-1-propanols **21a/b**, resp.: yield, **88**, 86%; R_F 0.24 [hexane- C_6H_6 -Me₂CO (8:1:1)]; [α]_D +30⁰, -40⁰ (c 1.23, 1.07); both light yellow oils; δ_H , ref. 5; m/z 332 (M⁺, 7%) (Found: M⁺ 332.1621. $C_{19}H_{24}O_5$ requires M 332.1623).
- (S)- and (R)-2-(4-methoxyphenyl)-3-(4-methoxy-2-O-methoxymethylphenyl)-1-propanols **22a/b**, resp.: yield, 81, 80%; R_F 0.4 [hexane-C₆H₆-Me₂CO (6:2:2)]; $[\alpha]_D + 10^0$, -8⁰ (c 1.07, 1.03); both light yellow oils; δ_H , 7.14 [2,6-H(B), d, J=8.5 Hz], 6.88-6.81 (1xAr-H, m), 6.84 [3,5-H(B), d, J=8.5 Hz], 6.67 [3-H(A), d, J=2.5 Hz], 6.41 [5-H(A), dd, J=2.5, 8.5 Hz], 5.17-5.12 (OCH₂OMe, m), 3.78, 3.75 (2xOMe, each s), 3.77-3.69 (1-CH₂, m), 3.48 (-OCH₂OMe, s), 3.09-2.96 (2-H, m), 2.96, 2.79 (3-CH₂, both dd, J=8.0, 13.0 and 6.5, 13.0 Hz), 1.80-1.74 (-OH, br. s); m/z 332 (M⁺, 16%) (Found: M⁺ 332.1628. C₁₉H₂₄O₅ requires M 332.1624).
- (S)- and (R)-2-(2-methoxyphenyl)-3-(4-methoxy-2-O-methoxymethylphenyl)-1-propanols 23a/b, resp.: yield, 74, 77%; R_F 0.36 [hexane-C₆H₆-Me₂CO (6:2:2)]; $[\alpha]_D$ +14⁰, -11⁰ (c 1.02, 0.96); both light yellow oils; δ_H , 7.24-7.14 (2xAr-H, m), 6.91 [6-H(A), d, J=8.5 Hz], 6.93-6.82 (2xAr-H, m), 6.67 [3-H(A), d, J=2.5 Hz], 6.41 [5-H(A), dd, J=2.5, 8.5 Hz], 5.16, 5.13 (-OCH₂OMe, both d, J=6.5 Hz), 3.76-3.70 (1-CH₂, m), 3.72, 3.71 (2xOMe, each s), 3.62-3.52 (2-H, m), 3.47 (-OCH₂OMe, s), 3.04, 2.82 (3-CH₂, both dd, J=8.0, 13.5 and 6.5, 13.5 Hz), 2.01-1.05 (-OH, br. s); m/z 332 (M⁺, 18%) (Found: M⁺ 332.1624. C₁₉H₂₄O₅ requires M 332.1624).
- (S)- and (R)-2-(2,4-dimethoxyphenyl)-3-(4-methoxy-2-O-methoxymethylphenyl)-1-pro-panols **24a/b**, resp.: yield, 80, 84%; R_F 0.20 [hexane-C₆H₆-Me₂CO (7:2:1)]; $[\alpha]_D$ +33°, -25° (c 1.0, 1.02); both light yellow oils; δ_H , 7.12, 6.91 [6-H(A)/6-H(B), d, J=9.0 Hz], 6.67 [3-H(A) or 3-H(B), d, J=2.5 Hz], 6.46-6.39 (4xAr-H, m), 5.16 (-OCH₂OMe, s), 3.78, 3.75, 3.74 (3xOMe, each s), 3.75-3.70 (1-CH₂, m), 3.49 (2-H/OCH₂OMe, br. s), 3.00, 2.79 (3-CH₂, both dd, J=8.0, 13.5 and 6.5, 13.5 Hz), 1.92-1.88 (-OH, br. s); m/z 362 (M⁺, 9%) (Found: M⁺ 362.1711. C₂₀H₂₆O₆ requires M 362.1729).

General procedure for preparation of the 3-(2-hydroxyphenyl)-1-propanols 19-24 (R⁵=H).

The 2-O-methoxymethylphenyl propanols 19-24 (R⁵=MOM) (0.3 mmol) were refluxed for 1 h in MeOH (2 ml) containing 3M HCl (5 drops), water (2 ml) was added and the mixture was extracted with Et₂O (3x10 ml). The ethereal layer was washed with satd. NaHCO₃ soln. (5 ml) and water (10 ml), was dried (Na₂SO₄) and the solvent evaporated to give the 2-hydroxyphenyl-1-propanols 19-24 (R⁵=H) in yields exceeding 95%. The purity and identity of these deprotected phenols were assessed by ¹H NMR and since compounds 19-24 (R⁵=MOM) were fully identified, there is no need to do the same for the phenolic analogues.

General procedure for preparation of the isoflavans 25-30.

A soln. of Ph₃P (9.5 eq.) and DEAD (4.0 eq.) in dry THF (2.5 ml) was added to the phenolic propanols, e.g. 19a (R⁵=H), in dry THF (3.0 ml) and the mixture was stirred for 1.5 h at rt. The THF was evaporated, the mixture dissolved in DCM and purified by PLC.

- (S)- and (R)-4'-methoxyisoflavans 25a/b, resp.: ee, both >99%; yield, 85, 80%; R_F 0.38 [hexane-Me₂CO (98:2)]; $[\alpha]_D$ -3⁰, +4⁰ (c both 1.2); both white needles, mp 80⁰C; δ_H , ref. 5; CD $[\theta]_{295}$ +10, +2.9, $[\theta]_{283}$ -4010, +4000, $[\theta]_{279}$ -3090, +3200, $[\theta]_{263}$ -170, +139, $[\theta]_{235}$ -1230, +816, $[\theta]_{232}$ -627, +281; m/z 240 (M⁺, 34%) (Found: M⁺, 240.1151. C₁₆H₁₆O₂ requires M 240.1150).
- (S)- and (R)-3',4'-dimethoxyisoflavans **26a/b**, resp.: ee, both >99%; yield, 85, 84%; R_F 0.62 [hexane- C_6H_6 -Me₂CO (6:2:2)]; [α]_D +1⁰, -6⁰ (c both 1.03); both white needles, mp 69^oC; δ_H , ref. 5; CD [θ]₂₉₈ -86, -2.0, [θ]₂₈₄ -5110, +4230, [θ]₂₇₂ +24, 0, [θ]₂₆₉ +475, -295, [θ]₂₆₀ -32, -18, [θ]₂₃₈ +1670, -1290, [θ]₂₃₄ +348, -832; m/z 270 (M⁺ 68%) (Found: M⁺, 270.1255. C₁₇H₁₈O₃ requires M 270.1255).
- (S)- and (R)-2',4'-dimethoxyisoflavans 27a/b, resp.: ee, both >99%; yield, 70, 75%; R_F 0.75 [hexane- C_6H_6 -Me₂CO (6:2:2)]; $[\alpha]_D$ +14⁰, -17⁰ (c 1.0, 1.03); both white needles, mp 75⁰C; δ_H , ref. 5; CD $[\theta]_{295}$ -37, -75, $[\theta]_{285}$ -2770, +2990, $[\theta]_{272}$ +2060, -2230, $[\theta]_{245}$ -94, -39, $[\theta]_{237}$ -2610, +52200, $[\theta]_{228}$ -394, +251; m/z 270 (M⁺, 33%) (Found: M⁺, 270.1255. $C_{17}H_{18}O_3$ requires M 270.1256).
- (S)- and (R)-7,4'-dimethoxyisoflavans **28a/b**, resp.: ee, both >96%; yield, 80, 81%; R_F 0.24 [hexane-Me₂CO (9:1)]; $[\alpha]_D$ -12°, +21° (c 1.05, 1.0); both white needles, mp 103°C (lit.²⁵ 105-107°C); δ_H , 7.16 [2,6-H(B), d, J=8.5 Hz], 6.98 [5-H(A), d, J=9.0 Hz], 6.89 [3,5-H(B), d, J=8.5 Hz], 6.47 [6-H(A), dd, J=2.5, 8.0 Hz], 6.42 [8-H(A), d, J=2.5 Hz], 4.30 (2-H_{eq}, ddd, J=2.0, 3.5, 10.0 Hz), 3.96 (2-H_{ax}, dd, J=10.5, 10.5 Hz), 3.80, 3.76 (2xOMe, each s), 3.22-3.11 (3-H, m), 2.95-2.88 (4-CH₂, m); CD [θ]₃₁₂ -37, 0, [θ]₂₈₂ -2590, +2660, [θ]₂₄₈ +9, +10, [θ]₂₃₇ +2560, -2290, [θ]₂₃₂ -390, -460; m/z 270 (M⁺, 60%) (Found: M⁺, 270.1252. Calculated for C₁₇H₁₈O₃, M 270.1256).
- (S)- and (R)-7,2'-dimethoxyisoflavans **29a/b**, resp.: ee, both >99%; yield, 90, 83%; R_F 0.28 [hexane-Me₂CO (98:2)]; $[\alpha]_D + 1^0$, -4^0 (c 1.05, 1.0); both white needles, mp 80°C (lit.²⁶, 81°C); δ_H , 7.27-7.20 (1xAr-H, m), 7.12 [3- or 6-H(B), dd, J=2.0, 8.5 Hz], 6.98 [5-H(A), d, J=8.0 Hz], 6.96-6.87 (2xAr-H, m), 6.47 [6-H(A), dd, J=2.5, 8.0 Hz], 6.42 [8-H(A), d, J=2.5 Hz], 4.34 (2-H_{eq}, ddd, J=2.0, 3.5, 10.5 Hz), 4.04 (2-H_{ax}, dd, J=10.5, 10.5 Hz), 3.83, 3.76 (2xOMe, each s), 3.71-3.59 (3-H, m), 3.00 (4-H_{ax}, ddd, J=1.5, 10.5, 15.5 Hz), 2.89 (4-H_{eq}, ddd, J=2.0, 5.5, 15.5 Hz); CD $[\theta]_{298}$ -77, +50, $[\theta]_{283}$ -4610, +1810, $[\theta]_{261}$ 0, -37, $[\theta]_{237}$ +25000, -8500, $[\theta]_{225}$ +160, -1090; m/z 270 (M⁺, 76%) (Found: M⁺, 270.1254. Calculated for C₁₇H₁₈O₃, M 270.1256).
- (S)- and (R)-7,2',4'-trimethoxyisoflavans 30a/b, resp.: ee, both >99%; yield, 88, 82%; R_F 0.34 [hexane-Me₂CO (9:1)]; $[\alpha]_D$ +9⁰, -12⁰ (c 0.98, 1.0); both white needles, mp 63⁰C (lit.²⁷, 61⁰C); δ_H , 7.01, 6.97 [5-H(A)/6-H(B), both d, J=8.5 Hz], 6.49-6.40 (4xAr-H, m), 4.30 (2-H_{eq}, ddd, J=2.0, 3.0, 10.0 Hz), 3.99

 $(2-H_{ax}, dd, J=10.0, 10.0 \text{ Hz}), 3.81, 3.79, 3.76 (3xOMe, each s), 3.61-3.51 (3-H, m), 2.97 (4-H_{ax}, ddd, J=1.5, 11.0, 16.0 Hz), 2.86 (4-H_{eq}, ddd, J=2.0, 5.5, 16.0 Hz); CD <math>[\theta]_{300}$ -78, +21, $[\theta]_{288}$ -4780, +3310, $[\theta]_{274}$ +17, +35, $[\theta]_{268}$ +570, -310, $[\theta]_{254}$ +130, -84, $[\theta]_{237}$ +12800, -6290, $[\theta]_{230}$ +650, +100; m/z 300 (M⁺, 34%) (Found: M⁺, 300.1361. Calculated for C₁₈H₂₀O₄, M 300.1362).

ACKNOWLEDGEMENTS

Financial support by the Foundation for Research Development, Pretoria and the 'Sentrale Navorsingsfonds' of this University is gratefully acknowledged.

REFERENCES

- 1. Middleton Jr., E.; Kandaswami, D. in *The Flavonoids-Advances in Research since 1986*, ed. Harborne, J.B. Chapman & Hall, London, **1994**, p. 619.
- 2. Dewick, P.M. in *The Flavonoids-Advances in Research since 1986*, ed. Harborne, J.B. Chapman & Hall, London, **1994**, p. 117.
- 3. Engler, T.A.; Letavic, M.A.; Reddy, J.P. J. Org. Chem., 1991, 113, 5069.
- 4. Mori, K.; Kisida, H. Liebigs Ann. Chem., 1988, 721.
- 5. Versteeg, M.; Bezuidenhoudt, B.C.B.; Ferreira, D. Heterocycles, 1993, 36, 1743; Heterocycles, 1998, in press, paper COM-98-8149.
- 6. Versteeg, M.; Bezuidenhoudt, B.C.B.; Ferreira, D.; Swart, K.J. J. Chem. Soc., Chem. Commun., 1995, 1317.
- 7. Evans, D.A.; Britton, T.C.; Ellman, J.A. Tetrahedron Lett., 1987, 28, 6141, and cited references.
- 8. Ward, D.E.; Rhee, C.K. Tetrahedron Lett., 1991, 32, 7165.
- 9. Beutelman, H.P.; Xie, L.; Saunders, W.H. J. Org. Chem., 1989, 54, 1703.
- 10. Close, W.J. J. Org. Chem., 1950, 15, 1131.
- 11. Roder, H.; Helmchen, G.; Peters, E.M.; Peters, K.; von Schnering, H.G. Angew. Chem., Int. Ed. Engl., 1984, 32, 898.
- 12. Cardillo, G.; D'Amico, A.; Orena, M.; Sandri, S. J. Org. Chem., 1988, 53, 2354.
- 13. Drewes, S.E.; Malissar, D.G.S.; Roos, G.P.H. Cherm. Ber., 1993, 126, 2663.
- 14. Paderes, G.D.; Metivier, P.; Jorgenson, W.L. J. Org. Chem., 1991, 56, 4718.
- 15. Cardillo, G.; Orena, M.; Romero, M.; Sandri, S. Tetrahedron, 1989, 45, 1501.
- 16. Shih, T.L.; Wyvratt, M.J.; Mrozik, H. J. Org. Chem., 1987, 52, 2029.

- 17. Evans, D.A.; Ennis, M.D.; Mathre, D.J. J. Am. Chem. Soc., 1982, 104, 1737.
- 18. Clark-Lewis, J.W.; Dainis, I.; Ramsay, G.C. Austr. J. Chem., 1965, 18, 1035.
- 19. Kurosawa, K.; Ollis, W.D.; Redman, B.T.; Sutherland, I.O.; Gottlieb, O.R.; Alves, H.M. Chem. Commun., 1968, 1265, and cited references.
- 20. Bezuidenhoudt, B.C.B.; Brandt, E.V.; Roux, D.G. J. Chem. Soc., Perkin Trans. 1, 1984, 2767.
- 21. Kurosawa, K; Ollis, W.D.; Redman, B.T.; Sutherland, I.O.; Alves, H.M.; Gottlieb, O.R. *Phytochemistry*, 1978, 17, 1423, and cited references.
- 22. Hatano, T.; Kagawa, H.; Yasuhara, T.; Okuda, T. Chem. Pharm. Bull., 1988, 36, 2090.
- 23. Thom, C.; Kocienski, P. Synthesis, 1992, 582.
- 24. Evans, D.A.; Britton, T.C.; Dorow, R.L.; Dellaria, J.F. J. Am. Chem. Soc., 1986, 108, 6395.
- 25. Anjaneyulu, A.S.R.; Krishna, C.S.; Row, L.R. Tetrahedron, 1965, 21, 2677.
- 26. Anirudhan, C.A.; Whalley, W.B. J. Chem. Soc. (C), 1966, 6, 629.
- 27. Inoue, N. Bull. Chem. Soc. Jpn., 1964, 37, 601.